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somewhat simplified by an approximation. It is shown that the radiance function is
invariant for a large class of optical systems. It is also shown that fundamental
limitations for the concentration of light follow from the uncertainty principle and the
second law of thermodynamics, which apply quite generally. These relations show
why quasi-homogeneous light (such as light from thermal sources) can not be
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1. INTRODUCTION

Non-imaging concentrators are almost always studied using geometrical optics,'

because no wave theory techniques have been developed that are adequate for this
purpose. Recently, some progress has been made toward developing a wave theory that
might be useful.2

-3
,4 A primary difficulty is the proper definition of the radiance

function within a wave theory. Walther 5
.
6 has suggested two different definitions,

which have received some study.7,8 In this report, some preliminary observations are
made on the way such a theory might be used to analyze non-imaging concentrators.

The concentration of light of arbitrary coherence is considered in section 2. An
equation is derived that describes the propagation of the radiance function for such a
light field through any linear, stationary optical system. Some limitations for the
concentration of light, which are usually obtained from geometrical optics, are derived
using this wave theory. In section 3, the special case of light from a quasi-homogeneous
source is considered, and it is found that the propagation expression for the radiance
function is simplified. For a class of linear, stationary optical systems (including free
space propagation in a short-wavelength limit), the radiance function is invariant upon
propagation of the light through the system.

2. RADIATION IN ANY STATE OF COHERENCE

We will begin by considering a light field, of arbitrary coherence, propagating away
from the z = 0 plane to the right, as shown in Figure 2.1. For convenience, the energy
transported by each monochromatic component of this field is described using
the complex form of the radiance function over the z = 0 plane, as defined by
Walther (W), 6

W. T. Welford and R. Winston, High Collection Nonimaging Optics, Academic Press, New
York (1989).
2W. Welford and R. Winston, "Generalized Radiance and Practical Radiometry,"J. Opt. Soc.

Am. A: Opt. Image Sci. 4, 545-547 (1987).
3R. Winston and X. Ning, "Generalized Radiance of Uniform Lambertian Sources,"J. Opt. Soc.

Am. A: Opt. Image Sci. 4, 516-519 (1988).
4R. Winston, "Analogy Between Fresnel Diffraction and Generalized Radiance," J. Opt. Soc.

Am. A: Opt. Image Sci. 6, 145-146 (1989).
SA. Walther, "Radiometry and Coherence," J. Opt. Soc. Am. 58, 1256-1259 (1968).
'A. Walther, "Radiometry and Coherence," J. Opt. Soc. Am. 63, 1622-1623 (1973).
'J. T. Foley and E. Wolf, "Radiometry as a Short Wavelength Limit of Statistical Wave Theory

with Globally Incoherent Sources," Opt. Commw,. 55, 236-241 (1985).
8J. T. Foley and E. Wolf, "Radiance Functions of Partially Coherent Fields," J. Mod. Opt. 38,
2053-2068 (1991).
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Figure 2.1 An illustration of the coordinate system. I

os jJW.0) (x',x)exp[-iks.(x-x)]d~x (2.1)1

where W °)(x',x') is the cross-spectral density function9 for a typical monochro- 3
matic component of the field at frequency w between two points on the z = 0 plane
defined by the radius vectors x and x from the origin, s is a unit vector from the
origin, 0 is the angle that s makes with the +: axis, and k = w/c. The radiance function, I
as usually defined in radiometry, is the energy radiated from a unit area about a point
x' in a plane into a unit of solid angle about some direction s from the origin. In a wave
theory it is not possible' ° to define a function that has all of the properties of the
geometrical optics radiance function. There is, however, more than one definable I
function that approximates the geometrical optics radiance function in some useful
respects. The definition for the radiance function in Equation 2.1 differs from that
defined earlier by Walther5 and used extensively by Marchand and Wolfl in their
development of the statistical theory of radiometry and radiative transfer. No reason
has yet been discovered to prefer one definition over the other, except its usefulness in

a particular theory.

'W. H. Carter, "Coherence Theory," in The Optical Society of America Handbook ofOptics, M.
Bass (ed.), McGraw-Hill, New York (in press). I
"0A. T. Friberg, "On the Existence of a Radiance Function for Finite Planar Sources of Arbitrary

States of Coherence," J. Opt. Soc. Am. 69, 192-198 (1979).
11E. W. Marchand and E. Wolf, "Radiometry with Sources of any State of Coherence," J. Opt.

Soc. Am. 64. 1219-1226 (1974).
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In Equation 2.1 the radiance is defined as a function of the cross-spectral density
function over the z = 0 plane, which can be defined by9

W.0O (Xi. X2) = ( [ (2.2)

where 4( °) (x', w,) is a random variable describing the complex amplitude of a typical
monochromatic component of the field with radial frequency w at a point given by the
radius vector x' in the z = 0 plane. The angle brackets denote an ensemble average.

If we assume that the sources of the field are to the left of the z = 0 plane, as shown
in Figure 2.1, then it follows that the amplitude of the field anywhere to the right of this
plane can be represented using an angular spectrum of plane waves in the form

323
O(x,W) = ,f fA(.?)(p,q) exp[ik( px+ qy+ mz)] dpdq, (2.3)

m= I_-p2 -q 2 , if p 2 +q2 <1,

Sm = p2 + q2 1, if p 2 +q 2 >1,

where the complex amplitude of the plane wave propagating in the direction given by
the unit vector p = (p, q, m) is the Fourier transform of the field amplitude over
the z = 0 plane; that is,

A(°)(p,q) = -1 fJ(O)(x',) exp[-ik(px'+qy')]dx'dy', (2.4)
X-- --f

which has the inverse

0 ()(x" W) = f J A °)(pq) exp[ik(px'+qy')]dpdq. (2.5)

Substitutig from Equation 2.5 into Equation 2.1, we have a very simple expression
for the radiance function of this field,

BI)(x',s) = (0)' ix,)] A ,)(sx,sy expiks.x') cose, (2.6)

where the components of the unit vector are s = (s., sy, s.). From Equation 2.6, we see
that Walther's radiance function for a light field of arbitrary coherence is simply the
ensemble average of the product of the complex conjugate of the field amplitude over
the z = 0 plane, the angular spectrum of plane waves for the field, a Fourier kernel
between the conjugate variables s and x', and the cosine of 0, the angle that s makes
with the +z axis. It is clear from Equations 2.4, 2.5, and 2.6 that the variables s and x',
on which Walther's radiance function depends, are Fourier conjugate variables.

* 9
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Figure 2.2 Propagation of the radiance function through a linear, spatially stationary
optical system.

To treat non-imaging concentrators, we must consider the propagation of the
radiance function itself through some arbitrary optical system from some input plane
Z = 0, (shown to the left in Figure 2.2) to an output plane z = 0 (shown to the right in

Figure 2.2).
The radiance function on the input plane is given by Equation 2.6, using primed

coordinates:

B("=0(x s) ([0 (x',) A" ,")(s. s;)) exp(iks'.x')cos0' (2.7)

The radiance function on the output plane is given by the same equation with
unprimed coordinates:

B"O (xs) ([,Z.O(X,,) Az.O)(s- ,,,))exP(ks.x)cos0. (2.8)

If the optic . system is linear and stationary, then the field amplitude in the output I
plane is

V#(Z0 )(x'W) 2-O .x- J Jz(x -x') dx'dy' (2.9)

as a function of the field in the input plane and the point-spread function h(x) for the
optical system. By taking the Fourier transform of Equation 2.9, using the convolution I

10 3
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theorem, 12 and then using Equation 2.4 twice to represent the Fourier transforms of the
fields over the z = 0 and z' = 0 planes as angular spectra, we get

=,=(pq) = A=°)(p,q)h(p,q), (2.10)

an expression for the angular spectrum of plane waves for the field in the output space
as a function of the angular spectrum in the input space and the transfer function for the
optical system. The tilde indicates i two-dimensional Fourier transform, so the transfer
function is given by

(pq) = 2 f h(x)exp[-ik(px+qy) ]dxdy "  (2.11)

the Fourier transform of the point-spread function.
Substituting from Equations 2.9 and 2.10 into Equation 2.8 and using Equation 2.7,

we get

Bw()(x, s) exp(iks x){ [B w  (,s)exp(-ikshx)]*h*(x)}h(sx,s) (2.12)

as an expression for the propagation of the radiance function through the optical system
from the input plane to the output plane. Thus, the radiance function transforms by
convolution on its spatial coordinate with the point-spread function for this system,
and also by multiplication with the transfer function.

Linear systems are especially easy to treat. Depending on the form of the point-
spread function, this system may or may not be a non-imaging concentrator. If the
point-spread function reasonably approximates a Dirac delta function, then the system
images the field over the z' = 0 plane on the z = 0 plane. If the system represents free
space propagation from the z' = 0 plane to a z = 0 plane, which is parallel to it and some
fixed distance away, then Equation 2.9 is simply the Rayleigh diffraction integral of
the first kind 13 and Equation 2.12 holds with h(x), given by the well-known Rayleigh
kernel from this integral. A large class of non-imaging concentrators are linear and
space invariant, and therefore can be treated using this theory to transform the radiance
function. However, some non-imaging concentrators transform the radiance function
in a much more complicated way. In the most general case, we can not give a specific
equation equivalent to Equation 2.12 for the transformation of the radiance function;
however, we can identify some restrictions on the transformed radiance function for
even the most general concentrator.

Since de two variables s and x in Equation 2.8 (and s' and x' in Eq. 2.7) are Fourier
conjugate variables, the radiance function can not depend on them independently. If we
define the standard deviation for each Cartesian component of these variables by
equations such as

12J. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York (1968).

13W. H. Carter, "Three Different Kinds of Fraunhofer Approximations: I. Propagation of the
Field Amplitude," Radio Sci, 23, 1085-1093 (1988).

11
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f Jx2O(O)(x,w)dxdy [jf )( )~2I

(Ax)f JJ#(0)(xw)x dy J

J2A(0)(pq)dp dq [ pA(O)(p,q)dp dq -2(2.13)I
- I ...

J f JA,,) (p, q)dp dq [ fJA()(p~q)dpdq

then the radiance function is constrained by the well-known uncertainty law for Fourier
conjugate variables; that is,

V(z) = 2.

vy (z) = AyAq> x (21r

where the phase space volume function

V = v, (z)vy (z) = AxAyApAq > (X / 2w)2  (2.15)

has at least some of the properties of the etendue, which is the product of the area of
a light beam, normal to its direction of propagation, and the solid angle that the beam
subtends with the beam axis, as defined by geometrical optics theories.' Since the
maximum value for Ap and Aq is unity (p is a unit vector), we see immediately from
Equation 2.14 that the smallest possible spot a concentrator can achieve is given by

Sc MIn(AxAY)= --- ). (2.16)

Equation 2.6 shows that each monochromatic component of the light can be concen-
trated into a spot with a radius that is actually somewhat smaller than a single
wavelength. Such a small spot, however, is not always obtainable, as shown in the
following discussion.Consider the light concentration properties ofa general optical system. All we know

about this system is that the phase space volume function for the radiance function, as
it propagates through the system, can not be decreased. This is always true of any
optical system. This law is usually derived for the etendue in geometrical optics theory,
but in our wave theory it follows from the second law of thermodynamics. The phase
space volume represents an uncertainty associated with the light field, so the uncer-
tainty associated with the output light field can not be smaller than that associated with
the input light field:

12
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I in)  Ax'Ay'Ap'Aq' (2.17)
V(°3L =AxAyApA<q

I This law places a fundamental restriction on what any concentrator can accomplish
with a given light field.

Let the input light field form a spot centered on the origin over the z' = 0 plane, with
radii along the x and y axes defined by the standard deviations Ax' and Ay', respec-
tively. Assume that this spot of light radiates into the z' > 0 half-space within numerical
apertures projected onto the xz plane and yz plane and defined by the standard
deviations Ap' and Aq'. Since p' and q' are the x andy components of the unit vector
p', normal to the plane waves that make up the radiated field, it follows that if Ap'= Aq',
then the cone of light is symmetric about the +z' axis and makes the angle 0' with theI axis, such that

sin 0'4 _Ap'= Aq'. (2.18)

In general, we will assume that Ap' 96 Aq', so that the light cone is not symmetrical
about the z' axis.

Let the general optical system act as a light concentrator, forming a spot of light
centered on the origin in the output plane, with radii defined by the standard deviations
Ax and Ay, and radiating into the z > 0 half-space within numerical apertures defined
by the standard deviations ,ip and Aq. We define the concentration of the light in theusual way as the area of the light spot before concentration, divided by the area of the
light spot after concentration:I

CI Ax' (2.19)AxAy

Substituting for the standard deviations defining the spot size in the input and output
spaces from Equation 2.15 into Equation 2.19, we get

CA v On) ApAq (.0
V( ut) Ap'Aq' (2.20)

Thus, upon substitution from Equation 2.17 into Equation 2.20, we have

I: A~ (2.21)Ap'Aq ' ' (.1

a very general constraint on the ability of any optical system to concentrate light, which
is mandated by the second law of thermodynamics. Equation 2.21 states that the
concentration of the light field can not exceed the increase in the product of the
numerical apertures for the projection of the light cone onto the xz planes and yz planes
before and after concentration.

For the special case of an input light spot that is symmetric about the z' axis, so that
Ap' = Aq' = sin 0', and a symmetrical optical system, so that Ap = Aq = sin 0, we find
from Equation 2.21 that the concentration is limited by

13
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C , (s -0J2 (2.22)

where 0 and 0' are the angles that the light cones make with the z axis in the output and
input spaces, respectively.

The maximum concentration is obtained over the z = 0 output plane if the light cone
converging onto this plane from the aperture of the concentrator makes a half-angle 0
that approaches 900. Thus, the absolute limit on the concentration that can be achieved
by any light concentrator is given by

sin2 '" (2.23)

This limitation is identical to a very well known limit on the concentration that is
usually derived by use of geometrical optics.I The present derivation shows that this
limit follows from the second law of thermodynamics and is therefore fundamental to
any optical system. Equation 2.16 gives the smallest possible spot of light thatcan ever
be formed with any light field. Once we are given a specific light field, however, with
some fixed boundary condition over the z' = 0 plane for the field amplitude, Equation
2.23 gives the maximum amount by which the given spot can be reduced without
violating the second law of thermodynamics (and thereby decreasing the entropy of this
particular field).

3. RADIATION FROM QUASI-HOMOGENEOUS SOURCES

Next, we consider the concentration of radiation from quasi-homogeneous sources
rather than more general kinds of radiation. Thermal sources and many other naturally I
occurring (nonlaser) sources are quasi-homogeneous. For radiation from such sources
it is more convenient to begin with Walther's earlier definition for the radiance
function, which has been used extensively by Marchand and Wolf (MW)" in their
theory of radiometry. This definition has been shown to be fully equivalent to the
definition used in Equation 2.1 for quasi-homogeneous light fields. 14 For a field from
a quasi-homogeneous source over the z = 0 plane, we define the complex radiance
function, as shown in Figure 1, by

Bm~w +' -+ x w(O) (x, + 'x- exp(- iks x '')d -  (3.1)

For a quasi-homogeneous, secondary source over the z = 0 plane, the cross-spectral
density function over the z = 0 plane is given by the product 14

14W. H. Carter and E. Wolf, "Coherence and Radiometry with Quasihomogeneous Planar
Sources," J. Opt. Soc. Am. 67, 785-796 (1977).

14
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WI. -N X (x U() ,(x'), (3.2)

where f(O)(x') is the intensity distibution over this plane, and p(,,( - x) is he
complex degree of spectral coherence between two points x' and x' on the plane at
frequency w. For a quasi-homogeneous source, we require that the intensity I(0)(x+)
be a slow function relative to A(o)(x'), meaning that A(o) (x') has a bounded domain
of support and that 1(0) (x ') must vary so slowly as to be essentially constant over any
domain of equivalent area. The coordinates on the opposite sides of Equation 3.2 are
related by

(x +x), (yj+ y)
x+ = 2 '2 Y+ =  2

2 '2

x-_ = (x - xi), Y: = (Yi - Yi)' (3.3)

2 2

Substituting from Equation 3.2 into Equation 3.1, we get

B(O) (x, s) =/(o) (x)A( 0)(s)cos0 (3.4)

for the radiance of the radiation from a quasi-homogeneous source, where the tilde
again represents a two-dimensional Fourier transform of the form

M o=)( )=. i J *f(x)()exp( - ikx)d2x. (3.5)
--f --

Equation 3.4 is equivalent to Equation 2.6 for the radiation from a quasi-homogeneous
source.

Since both defimitions we have used for the radiance function are equivalent for
quasi-homogeneous sources, Equation 3.4 is also true for Walther's second definition
of radiance, so that

B(°O)(x s) = I(°)(x)i(°)(s)cosO, (3.6)

as shown specifically by Carter and Wolf 14 and as used extensively since then.7 ,8 Thus
Equation 2.12, which was derived in general for any type of radiation, can be used to
study the propagation properties of the radiance function for quasi-homogeneous light
as given by Equation 3.6. Before discussing this further, however, the significance of
Equation 3.4 will be examined within the classical theory of radiometry.

The radiant intensity radiated from the z = 0 plane in the direction given by the unit
vector s into the far field was found by Marchand and Wolf to be given by

15
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J,,,(s) = CosO f B(0)(XS)d2x (3.7),os -- i -- Is:
where for a quasi-homogeneous source we can now drop the subscript that denotes
which of Walther's definitions we are using. Thus, substituting from Equation 3.4 into
Equation 3.7, we find that

j.(S) =X2 cos2 0 1() (0)A() (S), (3.8)

where

1(0)(0)= f2 l(°)(x)d (3.9)

is a constant proportional to the total intensity integrated over the z -0 plane.
Substituting from Equation 3.8 into Equation 3.4 for A(O), we have

I 0)(x) J,(s)
B(Mw) -= 2 i(0)(o) cosO (3.10)

From Equation 3.10, we see that this radiance function factors into a function of x, I
which is proportional to the intensity distribution over the z = 0 plane; a function of s,
which is proportional to the radiant intensity radiated from the plane in the direction
s; and a l/cos 0 obliquity factor. Although Equations 3.10 and 2.6 each factor into a
function ofs and a function of x, note that s and x are not Fourier conjugate variables
in this theory for radiation from a quasi-homogeneous source as they are for a more
general theory in which the quasi-homogeneous approximation is not used. From
Equation 3.10, we see that both of Walther's definitions for radiance can, for the special
case of quasi-homogeneous light, be interpreted as describing the flow of light energy
from points in the z = 0 plane into specific directions toward the far field. This is in
keeping with the usual classical idea of radiance.

To develop a wave theory for a non-imaging concentrator, we again consider the
transformation of the radiance function from the z' = 0 plane to the z = 0 plane by an
optical system, as illustrated in Figure 2.2; however, this time we will assume that the
light in the input z' = 0 plane is quasi-homogeneous.

If the optical system shown in Figure 2.2 is a general, linear, stationary system, then
we know that the cross-spectral density function over the z = 0 plane is given by15

KT 
-__" 

-m -i

xh(xi-x,)h(X2-X'2) (3.11)|5

1W. H. Carter, "Generalization of Hopkins' Formula to a Class of Sources with Arbitrary

Coherence," J. Opt. Soc. Am. A: Opt. Image Sci. 2, 164-166 (1985).

16 3
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as a function of the cross-spectral density function over the input z'= 0 plane.
Substituting from Equation 3.2 into Equation 3.1 1, we find that this system transforms
the cross-spectral density function for the radiation from a quasi-homogeneous source
into

W(Z=O)(ix) f~ fd J2X, (z'=O)(X,.

X d2 x_ (z'°=)(x+)hXx'X...

From Equation 3.12, we see that the field over the output plane is not generally quasi-
homogeneous.

There are some linear, stationary optical systems that can transform a quasi-
homogeneous field over the z' = 0 input plane into a quasi-homogeneous field over the
z = 0 output plane. Transforming coordinates in the kernel of the propagation integral
in Equation 3.12 using Equation 3.3, we have

h(xt -' - 2->)xh -xf + 2)= h( X+ -X' + 2xh x"X -,_ x-x x

Thus, we find from substitution of Equation 3.13 into Equation 3.12 that to produce a
quasi-homogeneous field over the z = 0 output plane the spread function must obey the
equation

hx. X++x-)h*(x.+ ! = k,(x+)k,(x_). (3.14)

Substituting Equation 3.14 into Equation 3.12, we find that the the two surface integrals
in this equation can be separated so that the intensity transforms between the two planes
as

I=°(x) J (3.15)

and the complex degree of spectral coherence transforms as

,AO(x-) f J J )(x_') k,,(x- x'-)d? d(3.16)

17
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where the cross-spectral density function for the quasi-homogeneous field in the: = 0,
output plane is given by

W(' o)(XI IX2 ) = I(z=o)(X+) ( ((3.17)

Hereafter, a linear, stationary optical system with a spread function that satisfies
Equations 3.14, 3.15, and 3.16 will be referred to as a quasi-homogeneous preserving(QHP) system. An example of such a QHP system is the linear, stadionary optical
system with a Gaussian spread function given by

h(x) = 12 exp[_,xI2/(2o2)]. (3.18)

Substituting from Equation 3.18 into Equation 3.14, we find that

k,(x) 1 exp(_Ixj2/a2), (3.19)

and

k. x) 2 exp[- IX12/(4a2)] (3.20)1

Thus, any linear, stationary optical system with a Gaussian spread function is a QHP
system.

We can derive an equation equivalent to Equation 2.12 for the transfer of the
radiance function of the radiation from a quasi-homogeneous source through a QHP
optical system. Substituting from Equations 3.15 and 3.16 into Equation 3.4 for theradiance function over the z=O plane, and again using Equation 3.4 to represent the
radiance function over the z' = 0 plane, we get

B (x, s)= [B ° ) (s )](s)(3.21)

where the tilde indicates a Fourier transform:

k(s)=-f f Jk,(x) exp[-ik(s -x)] d'x. (3.22)1

Equation 3.21 is identical to Equation 2.12, which was obtained for a light field of
arbitrary coherence, except that k, (s) is not the Fourier transform of ktx), and the two
Fourier kernels are missing from Equation 3.21.

The minimum spot size a QHP concentrator can produce with radiation from any
quasi-homogeneous source can also be calculated. Because the field in both the input
and output planes is quasi-omogeneous, we have in each of these planes an intensity
function that is slow relative to the complex degree of spectral coherence, so that
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IAX+ >>Ax_ , Ay+ >> Ay_ , (3.23)

Ax+ >Ax_ , &ky+ > Ay_Iwhere Ax+ and Ay are the standard deviations of P °)(x+) in respect to x+ and y+;

Ax_- and Ay_ are the standard deviations of 0(=°)(x_) in respect to x- and y_;
Ax+ and Ay' are the standard deviations of P()(x') in respect to x' and y+; and
Ax"' and Ay' are the standard deviations of ( z'=° )(x' ) in respect to x"' and y-'. From

Equations 3.4 and 3.5, we see that s is a Fourier conjugate variable to x_, and s' is a
Fourier conjugate variable to x'. Thus, from the uncertainty principle for Fourier
conjugate functions, we have

l Ax-.As > -, Ay-As' >-)
21 - 2w' (3.24)

Ax As - - A, A y
_ 2w 21

I
where As, and As are the standard deviations of the function it.o (s) relative to sx andsy. and Asx and Asy are the standard deviatons of the function/ g')(s) relative to

s. ands'. From Equations 3.20 and 3.21, we have

,wAy. >> AX_ > 21r ,,2irAs1

i• Ay+ >> Ay_ )

x.A '21rAsY (3.25)

-- y+ > > A x'_ > X

2rAs;Y

Thus, the smallest spot that can ever be achieved with radiation from a quasi-
homogeneous source is limited by the equation

SQH A Min(Ax+ Ay+)>> ( (3.26)

for the maximum values of As, - Asy - 1. Comparing Equation 3.26 with Equation
2.16, we see that radiation from a quasi-homogeneous source (such asa thermal source)
can never be concentrated as much as light from some non-quasi-homogeneous
sources (such as a laser source).

Although Equation 3.26 gives a basic limitation on the smallest possible spot of lightI that can be formed with radiation from a kernel source, the second law of thermo-
dynamics gives another, independent, limitation on what can be done to concentrate a
given radiation field from a quasi-homogeneous source. The concentration, as definedI. in Equation 2.19, can be applied to radiation from a quasi-homogeneous source to ob-
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rain the optimum concentration that can be obtained by a QHP concentrator. To obtain I
this limitation, we again use the second law of thermodynamics, as in section 2:

VOiO Ax+AY+sAs <I (3.27)

V(° t) - X+Ay+'1s.Asy

so that upon substitution from Equation 3.27 into Equation 2.19, we get i
C = Ax+Ay+ As.Asy (3.28)

Ax"Ay+ - As As; 3

which is equivalent to Equation 2.21. If we assume, as before, that the optical system
and the illumination are symmetrical about the z axis in both spaces, so that
As' = Asy = sin 0' and As. = Asy = sin 0, then we find that

C:5 , (3.29)
~sin ') '

so that the absolute limit on the concentration is given again by

C 1 (3.30)
sin2 9'O

for the case where sin 0 approaches unity. I
As with the more general case, we have two independent limitations on the

concentration. Equation 3.26 gives a fundamental (diffraction) limitation on the
concentration of radiation from all quasi-homogeneous sources, which is that it can I
never be as well concentrated as some other radiation fields. Equations 3.28 and 3.30
give another limitation, which is that radiation from a given quasi-homogeneous
source can not be concentrated more than the ratio of numerical apertures, before and
after concentration, without violating the second law of thermodynamics.

Since both of Walther's definitions for radiance are equivalent for quasi-homoge-
neous light, there is another approach for studying the propagation of the radiance
function for quasi-homogeneous light through the linear, stationary optical system
shown in Figure 2.2. Substituting from Equation 3.6 into Equation 2.12, we find that
the radiance function for the field in the output plane of any linear, stationary optical
system is given by U

x 1[l(0)(x) exp(-iks.x)l *,h* (x)} (3.31)

provided that the light over the input plane is quasi-homogeneous. Consider the factor
in braces given by
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F Al r) 1r , ()ep-is-) * 1

=- J i l (° )(X ' )h*(x - x ' ) exp( - iksx') d2 x'. (3.32)

If we assume that the spread function h(x) has a domain of support about the origin that
is very small relative to any domain over which (°)(x) varies appreciably, so that
i(0)(x) is a slow function relative to h(x), then Equation 3.32 can be approximated by

F(x, s) = I(0) (x) 4* (s,,s,)exp(-iks x), (3.33)

where the tilde denotes the Fourier transform defined by Equation 2.11. Substituting
from Equation 3.33 back into Equation 3.30, we have

B(z=o)(X,s) = g(°)(s)i(°)(x)cos 014i(s)12
, (3.34)

which describes the manner in which the radiance function propagates through any
linear, stationary optical system for which the spread function satisfies the approxima-
tion that (0°)(x) is a slow function relative to h(x), leading to Equation 3.33.

Foley and Wolf7,8 have shown that if the optical system is simply propagation
through free space from one plane to another, Equation 3.34 is closely approximated,
in a short-wavelength limit, by

B,(z)(x, s) = AO)(s) 1(0) (x) cos 0, (3.35)

so that the radiance function is the same in both the input and output planes and is
therefore invariant upon propagation. From Equation 3.34, it is clear that for propaga-
tion of the radiance function through an optical system that has a unimodular spread
function 4(s), so that

Ih (s) 2 -1 (3.36)

over the domain where Isl < 1, Equation 3.35 still holds. Thus, there is a whole class of
optical systems for which the radiance function is invariant.

The free space propagation of a field that contains no evanescent plane waves has
a transfer function given by

h(s) =exp ikls - s!2 (z -z')] (3.37)

which is unimodular. But the corresponding spread function is the Rayleigh kernel,
which does not have bounded support. Thus, the approximation that was used to obtain
Equation 3.33 does not hold for this case. Nevertheless, Foley and Wolf have shown
that Equation 3.35 does hold for free space propagation, provided the wavelength is

21



The Johns Hopkins University

Applied Physics Laboratory
Laurel, Maryland 20723-6099 3

sufficiently small. The radiance function for light is therefore invariant for both free
space propagation and propagation through a large class of optical systems. 1

U

4. CONCLUSIONS S
This report has considered the concentration of a light field in any state of coherence I

by any optical system. The special case of the concentration of radiation from quasi-
homogeneous sources, which is applicable to radiation from thermal sources and most
other naturally occurring sources of low coherence, has also been considered.

A simple equation has been derived for propagating the radiance function through
any linear, stationary concentrator. This relation should be useful for modeling such
concentrators when a wave theory is required. A somewhat simpler equation for
describing the propagation of the radiation from a quasi-homogeneous source through
a QHP concentrator has also been found, which reproduces a quasi-homogeneous
source field in the output plane. Finally, an approximate expression has been obtained
for the propagation of the radiance function for quasi-homogeneous light through any I
linear, stationary optical system. This relation shows that for a large class of systems,
including free space propagation, the radiance function is an invariant.

It was possible to derive very general limitations on the smallest possible spot of
light that can be achieved by any light concentrator. For monochromatic components
of a light field, the smallest possible spot is given by Equation 2.16. This is simply the
well-known diffraction limit for focusing any monochromatic wave field. For radiation
from quasi-homogeneous sources, it was found in Equation 3.26 that the smallest I
possible spot must be much bigger than the diffraction limiL

Finally, it was shown that the well-known limitation on the concentration that can
be achieved with a given light source can be derived for any concentrator and any type i
of light field from a wave theory, and is a requirement of the second law of thermo-
dynamics.
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